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MICROBIAL TOXICITY OF MIXTURES OF ORGANIC CHEMICALS:
MODELING AND VALIDATION FOR NON-UNIFORM MIXTURES

1.0 INTRODUCTION

Toxicity of synthetic organic chemicals (SOCs) to microorganisms is an important consideration in
assessing the chemicals’ environmental impacts against their economic benefits. Microorganisms
play important roles in several environmental processes, both natural and engineered. In natural
systems, microorganisms drive the nutrient cycle and are also at the base of the food chain. In
engineered systems, microbial processes offer cost-effective options to control and mitigate
environmental pollution by SOCs. In addition, their response to SOCs may be extrapolated to
higher life forms, whose testing is more expensive and elaborate (Cronin et al., 1991).

Traditionally, an assortment of microorganisms is utilized to biomineralize municipal and domestic
wastewaters. These wastes are mainly composed of readily biodegradable organic chemicals;
however, due to rapid industrialization, several SOCs at toxic levels have now been detected in
municipal sewer lines resulting in plant upsets and discharge permit violations (Volskay and
Grady, 1988). Since most municipal wastewater treatment plants were not originally designed to
receive such SOCs, plant operators and regulatory agencies are concerned about the toxic effects of
SOCs to microorganisms. Advance knowledge of toxicity of SOCs can benefit plant operators in:
optimizing plant operation; setting pretreatment standards; establishing sewer discharge permits to
safeguard the plant and to protect receiving water quality; and in waste load allocations.

Microbial prbcesses have also emerged to be feasible technologies for treating industrial and
hazardous wastes and for remediating groundwaters and soils contaminated with SOCs. While
several SOCs have been demonstrated to be amenable to biological transformations into less
harmful end products, their success is severely limited by the toxic and inhibitory threshold levels
of the SOCs. Prior knowledge of toxicity of SOCs may be of benefit in these applications too.

Even though numerous toxicological studies on higher aquatic life forms have been reported in the
literature, systematic toxicity assays of SOCs on environmentally relevant microorganisms utilized
in waste mineralization have been undertaken only recently (Blum and Speece, 1990; Tang et. al.,
1992; Nirmalakhandan et al., 1993; and Sun et al., 1994). Apart from the numerical toxicity
values, these data sets also encode valuable toxicological information: interspecies correlations;
organism sensitivity; chemical structure-toxicity and chemical property-toxicity relationships etc.
Since the resources available for comprehensive and exhaustive toxicity testing of all the SOCs in
current use are severely limited, it is prudent to maximize the knowledge that can be gleaned from
available data upon which considerable resources have been expended.

1.1  Structure/Property Activity Relationships

Quantitative structure-activity relationship (SAR) and property-activity relationship (PAR)
techniques have emerged as rational tools to explore available test data for extracting the maximum
possible information from them and for developing predictive models. The premise of these
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techniques is that properties and activities of organic molecules are well correlated to their
molecular structures and basic physical/chemical properties. Using these techniques, it is now
possible to derive models from available test results that could predict reliable data for related,
untested chemicals. While the state-of-the-art SAR and PAR techniques cannot yet completely
replace experimental testing, they are being extensively used to complement test data in: designing
new chemicals with desired characteristics (Cramer, 1980); environmental assessments (Borman,
1990); screening and grouping similar chemicals for collective evaluation (Clements et al., 1993);
prioritizing testing (Zeeman et al., 1993); in classifying mechanisms and modes of toxic action
(Bradbury, 1994); and, in predicting joint toxicity in mixtures of chemicals (Nirmalakhandan et al.,
1993; Hall et al., 1996; Xu and Nirmalakhandan, 1997).

Such models can conserve the limited resources available for toxicity testing in a timely manner and
guide the regulatory risk assessment process in a rational and scientific manner. Recognizing these
advantages, the US Environmental Protection Agency (EPA), for example, has adapted over 50
PAR models for use on a daily basis for estimating toxicity of untested SOCs to several different
fish species (EPA-560/6-88-001). In addition, EPA uses SAR methodology to assess the
environmental fate, hazards, and risks of proposed new industrial chemicals prior to their
commercial manufacture (Zeeman et al., 1993). The OECD and the German Federal Environmental
Agency also use SAR in similar regulatory actions (Fiedler et al., 1990). ’

In this research, it is hypothesized that SAR techniques could be applied to predict joint toxic"
effects of mixtures of SOCs on microorganisms. Even though the toxic effects of multiple
chemicals acting jointly on aquatic life forms have been the subject of considerable research in the
past three decades, such effects on microorganisms have not been studied until now.

1.2 Joint Effects in Mixtures of Chemicals

The study of joint effects originated with the analysis of the effect of two chemicals in binary
mixtures. Plackett and Hewlett (1967) identified four types of joint effects: similar vs. dissimilar
depending on whether the sites of action and the modes of primary action of the two chemicals are
the same or different; and interactive vs. non-interactive, depending on whether one chemical does
or does not influence the biological action of the other. If the response of the organism is produced
by a combination of the two chemicals, then they are said to exert joint action. This joint action can
be further classified into simply additive, more than additive, and less than additive. When this
scheme is applied to multi-component mixtures, the analysis becomes complex, because the joint
actions of different pairs may fall into different types of joint action.

In quantifying the effects of components in mixtures, the concept of toxic unit is often used. It is
defined as:

TU, = =
=7 (n
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where, z; is the concentration of a componenti in a mixture that causes a certain response, and Z;
is its concentration causing the same response when acting singly. In microbial toxicity, this
response could be 50% inhibition of respiration rate. If the TUs of all the components in a mixture
are equal, then the mixture is referred to as an equitoxic or a uniform mixture.

Using the TU concept, ecotoxicologists have proposed alternate schemes to characterize the degree
of joint action of multiple chemicals acting together. In one scheme, the sum of the TUs of the
components, M (i.e. M = Y TUj), is used as an index to categorize the type of joint action: ifM=
1, the components are simply additive (also referred to as concentration addition); if M < 1, more
than additive; and, if M > 1, less than additive. Hermens et al (1985) evaluated literature toxicity
data on fish and found average M = XTU; = 0.9 in mixtures of 50 non-reactive chemicals; and
average M = YTU; = 1.1 in 17-component mixtures. They concluded that the chemicals acted

together by simple addition since M values were “very close to 1”.

In another scheme, proposed by Marking (1977), an additive index, Al, is used as the index
where,

_AI=K1A--1 M < 1

| @
Al=1-M ifM>1

According to this scheme, when Al = 0, components are simply additive; if AI > 0, then more than

additive; and, if AI < 0, less than additive. Lewis and Perry (1981) applied this scheme to analyze

joint effects of equitoxic mixtures of three chemicals on bluegills and found Al values ranging from

0.30 to -1.23. Even though several Al values in their studies deviated significantly from 0, they
concluded that the chemicals acted by simple addition, based on the average Al of 0.05.

Another scheme proposed by Konemann (1981) uses a mixture toxicity index, MT], defined as:

log M

MTI = 1 - log M.

3

where M, = M + the largest TU; in the mixture. In this scheme, MTI = 1 implies simply additive;
MTI = 0 independent action; MTI < 0 antagonism; MTI > 1 the supra-addition; and 1> MTI >0,
partial addition. Broderius and Kahl (1985) used this scheme to analyze joint effects of several
equitoxic 7-, 14-, and 21-component mixtures, and concluded simple additivity with MTI values
ranging from 0.93 to 1.06. Hermens et al (1984) evaluated joint effects of 14 miscellaneous
chemicals to Daphnia magna and concluded simple addition, with an average MTI of 0.95.

Christensen and Chen (1989) have proposed an index defined as the similarity parameter, A, for
use in mixture toxicity analysis. According to this formulation, for an n-component mixture,
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A

i (TU))* =1 4

For noninteractive toxicity, A is restricted to lie between 0 and 1, and when A =1, the joint action

is identified as simply additive. When A > 1, interactive and more than additive is implied.
Christensen and Chen (1989) used binary toxicity data from the literature and showed that, for
chemicals acting by similar mechanisms, A ranged from 0.87 to 1.23, and concluded simple
additivity.

1.3 Joint Effects by Simple Addition

It is of interest to note the consensus among aquatic toxicologists that most organic chemicals act
jointly by simple addition. Hermens and coworkers (1984, 1985) found toxicities of 3 mixtures of
anilines (n = 6, 11, and 17) to guppies to be simply additive with MTI values of 0.95, 0.96, and
0.97. In another study of mixtures of 14 miscellaneous chemicals to Daphnia magna, Hermens et
al. (1984) reported that the joint effects were simply additive with MTI of 0.95. They also tested
mixtures containing from 5 up to 50 chemicals on Daphnia magna, and again found the simply
additive model valid with MTI values ranging from 0.7 to 1.05. Broderius and Kahl (1985)
evaluated the joint effects on fathead minnow, and reported that acute toxicity of binary and
multiple-component mixtures containing up to 21 constituents to be simply additive, with M
ranging from 0.87 to 1.23; Al from -0.233 to 0.149; and MTI from 0.932 to 1.200. Wolf et al.
(1988) reported similar findings about the simple addition model when tested on the joint effects of
wide range of chemicals on Daphnia magna. For mixtures consisting of up to 25 chemicals, their
M values ranged from 1.04 to 1.20; and MTI from 0.921 to 0.988. Broderius et al (1995)
evaluated toxicity to fathead minnow of binary mixtures of 46 industrial chemicals and concluded
that the chemicals acted primarily by simple addition and interactive toxicity was not common in
their experiments.

If the joint effects of a set of chemicals in a mixture can be accepted to be simply additive, then
their concentrations in any mixture that would result in a certain response can be readily estimated
from their respective individual concentrations causing the same response, when acting singly. The
practical utility of this deduction can be further enhanced by incorporating Quantitative Structure
Activity Relationship (QSAR) models to estimate the individual IC50 values directly from the
molecular structures of the components. This provides a strong impetus to develop QSAR models
for single chemical toxicity and to validate their usage in predicting joint effects in mixtures of
chemicals.




2.0  OBJECTIVES OF THIS PROJECT

During the first phase of this project, it was documented that QSAR techniques could be applied
successfully to predict joint toxic effects of uniform mixtures. In this second phase, additional
chemicals are assayed to demonstrate the applicability of the proposed approach to “new”
chemicals that were not included in the QSAR model development. In addition, the approach is
now demonstrated on non-uniform mixtures as well. The following are the specific objectives of
the second phase: '

1. Development of tools to analyze uniform and non-uniform mixture results

2. Development and validation of an approach to predict joint effects in non-uniform
mixtures .

3. Compare the predictive ability of the proposed approach with that of other models
reported in the literature.

Towards meeting the above objectives, the followihg modeling and experimental tasks are
undertaken in this second phase:

2.1  Modeling tasks: 4 . ,

1. Development of a statistically Valid testing procedure to confirm simple addition.in
uniform and non-uniform mixtures

2. Development of a QSAR-based modeling procedure to predict concentrations of
chemicals in uniform and non-uniform mixtures that would jointly cause 50%
inhibition of respiration.

3. Compare the modeling approach developed in this research against other SAR/PAR
approaches reported in the literature for single chemical microbial toxicity.

2.2 Experimental tasks:

1. Determination of single chemical IC50 values and their reproducibility with four
different runs for each experiment for a new set of test chemicals for two microbial
cultures: Polytox and activated sludge

9 Determination of IC50 values for six 6-component and eight 8-component non-uniform
mixtures of the new set of test chemicals for two microbial cultures: Polytox and
activated sludge. ~

Details of the above tasks are presented in the next section.




3.0 MODELING TASKS

3.1  Testing For Simple Addition
When one wishes to use the above schemes to determine whether a specified set of chemicals
would act together by simple addition or not, statistically valid “acceptance limits” have to be

assigned to the indexes M, AI, MTI, or A. These limits should account for the variances due to
experimental errors and the reproducibilities associated with the z; and Z; values. This would
enable end users to analyze and estimate multi-component mixture toxicity with a known degree of
reliability. Marking (1977) has proposed a simple method to assign a range to the additivity index.

According to this method, the 95% confidence intervals for the IC50 values are substituted in the
formulas for determining Al The lower and upper limits of IC50 values are used to get a range and
if that range included zero, additive toxicity is assumed to be valid. In this paper, two approaches

are proposed to assign acceptable ranges based on TU and A to conclude simple additivity in non-

uniform mixtures.

3.1.1 Range based on TU

In a mixture with n components, an acceptance range for TU of the nth chermcal TU,, that would
induce 50% inhibition in the presence of known TUs of the other (n-1) chemicals has to be
* established. This may be obtained from the regression of % inhibition vs. TU,, data, by assigning
a confidence interval to the inverse predicted TU, corresponding to 50% inhibition. This interval

is obtained from Bethea et al., (1985):

— -y t6 — ki
Rie= X+M°___y_)¢——{c(yo-y>2+¢ n+1 }2 (5)
0 n
0
where,
1
C = .
¥ (xi - x)
;
¢ = 612 - ct®6® i
and, t=1t "
n-2, —
2
The expected TU,, for simple additivity can be found from
n-1 n-1
ZTU—ZTU=1—ZTU| (6)
; .

If this expected TU,, falls within the range calculated from eq (5), then the components in that

mixture could be considered simply additive at the selected confidence level, o.




3.1.2 Range based on A

The range for A may be determined from the variance in the TUi (= zi/Zi). The variance in TUi is

caused by the variances in zi and Zi which can be estimated from
2
1
] Z Var z; Var Z;
T

2
z K, Hz

Var TU, = Var [i @)

Z

where, |1,; is the mean of the dosage of any chemical added to the reactor and iz is the mean of
the IC50 of that chemical; Var z; is the variance in the concentration of the dosage of the chemical;
and, Var Z; is the variance in the IC50 value of that chemical. Var z; depends on the error in the
volumes of the chemical dosages. Var Z; depends on the chemical being tested and the
reproducibility in the procédufe used for the IC50 measurements. Based on syringe manufacturers’
data, a 0.5% error in the syringe volumes is typical; thus the average Var z; can be estimated to be
around 0.5 mg/L. For most chemicals this can be considered negligible compared to the Var Z;.
For example, based on reproducibility tests performed by us on 4 chemicals a standard deviation of
16.4 mg/L was found to be typical (Nirmalakhandan, et al., 1994). Thus eq (7) can be reduced to
the following form:

Var TU, = Var [—'—] = — Varz, (8)

The square root of the above Var TUj gives the standard deviation of TU;, which when multiplied
by 2 can yield a 95% confidence interval for TU;. These upper and lower values for TU; can then

be substituted in eq 4 and solved by trial and error to yield an acceptance range for A. If this range
included 1, then the components in the mixture could be considered simply additive at the 95%
confidence level.




3.2 Prediction of Concentrations in Mixtures Causing 50% Inhibition
The method being proposed is based on the following two premises:
- that simple addition is an adequate mechanism by which joint effects could be quantified;
- that SAR models can adequately predict single chemical toxicity.
With these two premises, the concentrations of components in a mixture that would jointly cause
the desired end point can be predicted from their toxic units to uniform and nonuniform mixtures as

follows:

3.2.1 Application to uniform mixtures:
In a uniform mixture of n chemicals, toxic unit of each component will be the same. In such cases,
assuming simple addition, 50% inhibition would occur when

Y TU,=n*TU,=1 | ' ©)

i=1
1
giving TUi=—; (10)

Therefore, the concentration, C;, of any component, i, in the mixture that would contribute to 50%
inhibition ¢an be found based on its single chemical ICsq value from:
ICSO i

n

C= (1)

The ICsp; values in turn may be predicted directly from the molecular structures of the components
using QSAR models, such as eq 5. '

3.2.2 Application to non-uniform mixtures: :
In the case of non-uniform mixtures, if the toxic units or proportions of (n-1) components are

known, the concentration of the nth chemical (C,) that would induce the end point along with the
other (n-1) chemicals can be predicted from:

i n-1
C, = ICSO,n*ll - X TUi] (12)

i=1

Again, I“CA'SOJIl values may be predicted directly from the molecular structure of the n'® confponent
using SAR models.
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4.0 EXPERIMENTAL TASKS

In this research, toxicity was quantified by IC50, the dose of the test chemical that inhibited
microbial respiration by 50% compared to an undosed control. A total of 16 chemicals were chosen
to form the testing set so as to contain a mix of structural and elemental features that were
represented only individually in the original training sets used in developing the SAR/PAR models.
1C50 values for this testing set of 16 chemicals on Polytox and activated sludge were determined in
this study using a computer-interfaced, 12-reactor, Comput-OX Respirometer (N-CON Systems,
Crawford, GA). Details of the experimental system and the test procedures for determining IC50
values for single chemicals and uniform mixtures have been presented in detail in the previous
report and in several of our publications (Nirmalakhandan et al., 1993; Hall et al., 1996).

4.1  Determination of IC50 in non-uniform mixtures

In one series of non-uniform mixture tests, six organic chemicals were mixed in different Toxic
Units to form six different non-uniform mixtures (n = 6). In another series, eight organic
chemicals were mixed in different Toxic Units to form eight different non-uniform mixtures (n =
8). The composition and the TUs of the components of the different mixtures are listed in Table IL
Toxicity assays were conducted using a 12-reactor computer interfaced Comput-Ox Respirometer
Two reactors were used as controls and the remaining reactors were dosed with the mixtures. For
each test mixture of n chemicals, the TU of (n-1) chemicals were kept constant; the nth chemical
was added at various TU of 0.1, 0.2, 0.3. 0.4 and 0.5 to the mixture. Oxygen uptake rates of the
reactors dosed with the different mixtures were compared against those of the control reactors to
determine the % inhibition. Then, from plots of % inhibition vs. TUy, the TUy 509 corresponding
to 50% inhibition was obtained. Each mixture was tested three times to obtain triplicate TUp,50%
values, which were then used to determine the average >, TU; for that mixture.
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5.0 RESULTS

5.1  Single chemical QSAR models

The following single chemical QSAR models for different chemical types and test cultures derived
during the first phase of the project (Sun, 1993; Hall et al., 1996) are validated in this study. The
chemicals used in the first phase in developing these models are listed in Table I followed by the 16
chemicals assayed in this second phase for validation purposes.

QSAR models for Polytox cultureé:

Alcohols, ketones and esters:
log ICsq [mM/L] = 3.69 - 0.90 lyv (13)
n = 14; 12 = 0.910; RMS residual = 0.25; p = 0.0001

Alkanes:
log IC5o [mM/L] = 1.85 - 0.76 1x¥ - (14)
n = 11; r2 = 0.924; RMS residual = 0.13; p = 0.0001

Amines and acids:
log ICso [mM/L] = 1.18 - 0.51 Lyv (15)
n = 11; r2 = 0.902; RMS residual = 0.123; p = 0.0001 '

Aromatics: N .
log ICsq [mM/L] = 3.25 - 1.13 lyv - '-(1'6)
n=11; 12 =0.788; RMS residual = 0.278; p = 0.0003

Halogenated aliphatics:
log ICs5o [mM/L] = 2.67 - 0.44 Oy v a7
n = 12; 12 = 0.885; RMS residual = 0.143; p = 0.0001

QSAR models for Activated sludge cultures:
Alcqhols, ketones and esters:
log ICsq [mM/L] = 3.43 - 0.75 Iyv (18).
n = 14; 12 = 0.832; RMS residual = 0.30; p < 0.0001
Alkanes: :
log ICs [mM/L] = 2.02 - 0.63 v (19)
n = 11; 12 = 0.750; RMS residual = 0.23; p = 0.0006 :
Amines and acids:
log ICs [mM/L] =0.89 - 0.29 Inv :
n = 11; 12 = 0.629; RMS residual = 0.19; p = 0.0036
Aromatics:
log IC5o [mM/L] = 3.54 - 1.28 lyv 2D
n = 12; 12 = 0.660; RMS residual = 0.39; p = 0.0013 '
Halogenated aliphatics:
log ICso [MM/L] = 2.92 - 0.48 Oy (22)
n = 14; 12 = 0.785; RMS residual = 0.22; p < 0.0001

(20)




12

TABLE I Chemicals Assayed, Connectivity Indices, and Measured IC50 Values

TOF# Chermical Chemical MCTF* Exp. IC50, [mg/L]
name family* Oyv v ‘Polytox  A/S
1 Benzene ARO 3.46 2.00 685 993
2 Toluene ARO 4.38 2.41 207 - 292
3 Xylene ARO 5.30 2.82 140 166
4  Ethylbenzene ) ARO 5.09 2.97 220 222
5 Chlorobezene ARO 4.52 2.47 350 155
6 1,2-Dichlorobezene ARO 5.57 2.96 135 49
7 1,3-Dichlorobezene ARO 5.57 2.95 40 63
8 1,4-Dichlorobezene ARO 5.57 2.95 6 14
9 1,2,4-Trichlorobezene ARO 6.63 343 23 35
10  2,4-Dimethyl phenol ARO - 5.67 2.96 240 224
11  Methylene chloride HAL 2.97 1.60 1,750 1,994
12  Dibromomethane HAL 4.63 2.77 1,110 1,572
13 Carbon tetrachloride HAL '5.03  2.26 325 432
14  1,2-Dichloroethane HAL 3.68 2.10 685 1,385
15 1,1,1-Trichloroethane HAL 4.90 2.20 415 659
16  1,1,2,2-Tetrachloroethane HAL 5.68 2.29 180 197
17  1,2-Dichloropropane HAL 4.55 2.44 500 861
18  Bromochloromethane HAL 3.80 2.19 1,800 2,672
19 Bromodichloromethane HAL 4.80 2.44 90 249
20 Chlorodibromomethane HAL 5.64 2.92 425 206
21  Ethylene dibromide HAL 5.13 2.31 520 1,271
22  1,2-Dichloroethylene HAL 3.42 1.64 350 1,249
23 Trichloroethylene HAL 4.47 2.07 500 770
24  Tetrachloroethylene HAL '5.53 2.51 175 299
25  Cyclohexane ALK 4.24 3.00 74 133
26 Pentane ALK 4.12 241 70 150
27 Hexane ALK 4.82 2.91 38 47
28 Heptane ALK 5.53 3.41 18 58
29  Octane ALK 6.24 3.91 8 60
30 Bis(2-chloroethyl) ether AKE 5.50 3.18 1,600 28,541
31  Ethanol AKE - 2.15 1.02 40,000 28,541
32  Propanol AKE 2.86 1.52 7,200 10,875
33  Pentanol AKE 4.27 2.52 2,325 3,528

Note: * ARO - Aromatics; HAL - Halogenated aliphatics; ALK - Alkanes;
AKE - Alcohols, ketones and esters. ** MCI - Molecular Connectivity Index
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ID# Chemical Chemical MCI** Exp. IC50, [mg/L]
name family* Oxv Ixv Polytox  A/S

34  Octanol AKE 6.39 4.02 126 194
35 n-Butyl acetate AKE 5.43 2.90 3,750 1,649
36 Isobutyl acetate AKE 5.60 2.75 1,600 2,156
37 n-Amyl acetate AKE 6.14 3.40 440 1,031
38 Ethyl acetate AKE 4.02 1.90 5,400 5,427
39 Acetone AKE 2.90 1.20 48,000 48,619
40 Methyl ethyl ketone AKE 3.82 1.99 1,900 1,873
41 Methyl isobutyl ketone AKE 5.19 2.62 2,600 2,811
42 Methyl n-propyl ketone AKE 4.32 2.26 4,500 4,267
43 Cyclohexanone AKE 4.44 2.41 3,750 5,452
44 n-Butyl amine AMI 3.69 2.11 90 111
45 y-Butyl amine AMI 4.07 1.78 85 90
46 Diethylamine AMI 3.91 2.12 104 100
47 Acetic acid AMI 2.35 0.93 287 299
48 Cyclohexylamine AMI 4.69 2.64 60 103
49 Ethanolamine AMI 2.43 1.22 160 115
50 Trithanolamine AMI 6.03 3.39 900 741
51 2,2,2-Trichloroethanol AKE 5.05 2.37 2,813 2,685
52 2,2-Dichloroethanol AKE 3.99 2.03 8,047 8,836
53 1,2-Dichloro 2-methyl

propane HAL 5.47 2.72 744 635
54 1,2,3-Trichloropropane HAL 5.39 3.07 534 564
55 Cyclopentane ALK 3.54 2.50 129 164
56 1,1,2-Trichloroethane HAL 4.68 2.51 726 1,023
57 1,3-Dichloropropene HAL 4.12 2.19 274 369
58 m-Cresol ARO 4.75 2.54 643 580
59 p-Cresol ARO 4.75 2.54 833 522
60 2-Nitrophenol ARO 4.09 2.17 993 318
61 4-Nitrophenol ARO 4.09 2.25 431 125
62 2,4-Dinitrophenol ARO 4.50 2.37 523 169
63 2,4-Dichlorophenol ARO 5.94 3.09 166 73
64 2,3,4-Trichlorophenol ARO 7.00 3.58 58 32
65 2,3,5-Trichlorophenol ARO 7.00 3.57 66 32
66 2,4-Dinitrotoluene ARO 5.05 2.65 530 199

Note: * ARO - Aromatics; HAL - Halogenated aliphatics; ALK - Alkanes;
AKE - Alcohols, ketones and esters. ** MCI - Molecular Connectivity Index
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5.1.1 Statistical Validity of the Models

In linear regression studies, it is preferred to have 10 to 20 cases per variable. Since the number of
chemicals in three of the five subgroups in this study are near the lower limit, additional statistical
criteria were examined to verify the validity of the above models. First, the significance of each of
the models was evaluated based on “p” values. In toxicity studies, p<0.05 is often considered
“borderline statistically significant”, p<0.01 as “significant”, and p<0.005 as “highly significant”.
According to this guideline, all the above models could be considered highly significant. That is,
all these models can be expected to predict toxicity of chemicals of similar structure better than that

would be expected by pure chance alone.

Since a basic assumption in linear regression procedure is that the error terms in the resulting
model are independent, the residuals were examined next. The residuals for all the chemicals were
found to be randomly distributed when plotted against the fitted values and the fitted error is within
a factor of two for 83% of the chemicals used in the model development. Standard normal
probability plot of the residuals closely followed a linear pattern confirming normal distribution and
the absence of any outliers. Serial autocorrelation within residuals close to 1 or -1 implying
dependent cases is a common violation of the assumptions in linear regression. The serial
autocorrelation in the above models ranged from -0.392 to 0.403, indicating minimal impact. This
is further confirmed by the Durbin-Watson “d” values for the above models which ranged from
1.182 to 1.693. These d values are above the lower limit of ~1.0 for single variable models with
10 cases (Durbin and Watson, 1951). Thus, the above models can be considered robust and the
utility of these models in predicting ICso data may be of value.

5.2 Mixture Toxicity Results

In this report, single chemical, binary mixture, and multi-component uniform and nonuniform
mixture toxicity data presented in our earlier works (Nirmalakhandan et al, 1994; Sun et al, 1994,
Hall et al, 1995; Prakash et al, 1996; and Peace et al, 1997) are consolidated to illustrate the utility
of the QSAR approach in estimating joint effects in mixtures. Additional new data on mixtures of
chemicals not included in the QSAR model development are also used to validate the predictive
ability of the proposed approach in nonuniform mixtures. A total of 66 organic chemicals (Table I)
were tested in various binary and multiple combinations and in uniform and non-uniform

proportions.

5.2.1 Simple additivity in microbial toxicity
Table II summarizes all the different types of mixtures assayed, their respective constituents, and
the test cultures. Results of these tests were first analyzed for simple additivity. Table III

summarizes the 95% confidence intervals for XTU, AL, MTI, and A values for the different types

of mixtures assayed. Since the 95% confidence interval for all the mixtures except the 10-
component mixtures on A/S include the expected value of 1 = 1.0, it is concluded that the tested
chemicals all act by simple addition.




TABLE IL Types of Mixtures Assayed and their Constituents
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Mixture ID # Ref. Mixture type Components* Cultures
6Ml1to6M6 a 6-chemical, non-uniform 51,52,53,54,55,56 Polytox
8M1to8M8 a 8-chemical, non-uniform 51 ,52,53,54,55,56,57,58 Polytox
6M1to 6M10 a 6-chemical, non-uniform 51,52,53,54,55,56 A/S
8M1to8M8 a 8-chemical, non-uniform 51,52,53,54,55,56,57,58 A/S
8M1 b 8-chemical, non-uniform 12,30,32,33,35,36,40,41 Polytox
8M2 b 8-chemical, non-uniform 1,2,12,18,35,36,40,41 Polytox
8M3 b  8-chemical, non-uniform 22,23,32,33,35,36,40,41 Polytox
8M4 b  8-chemical, non-uniform 4,12,17,18,32,33,34,36 Polytox
8M5 b 8-chemical, non-uniform 4,10,18,22,23,32,33,36 Polytox
8M6 b 8-chemical, non-uniform 2,4,5,10,15,21,35,40 Polytox
8M1 c 8-chemical, uniform 12,30,32,33,35,36,40,41 A/S
8M2 c 8-chemical, uniform 1,2,12,18,35,36,40,41 A/S
8M3 c 8-chemical, uniform 22,23,32,33,35,36,40,41 A/S
8M4 c 8-chemical, uniform 4,12,17,18,32,33,34,36 A/S
8M5 c 8-chemical, uniform 4,10,18,22,23,32,33,36 A/S
8M6 c 8-chemical, uniform 2,4,5,10,15,21,35,40, A/S
10M1 c 10-chemical, uniform 1,2,4,5,10,12,18,32,33,36 A/S
10M2 c 10-chemical, uniform 4,5,10,12,18,22,23;32,33,36 A/S
10M3 c 10-chemical, uniform 4,5,10,17,32,33,35,36,40,41 A/S
10M4 c 10-chemical, uniform 2,4,5,10,32,33,35,36,40,41 A/S
10M5 c 10-chemical, uniform 17,31,32,33,34,35,36,40,41,43 A/S
10M6 c 10-chemical, uniform 1,2,12,18,31,35,36,40,41,43 A/S
10M7 c 10-chemical, uniform 12,18,22,23,31,32,33,40,41,43 A/S
10M8 c 10-chemical, uniform  4,5,17,32,34,35,36,40,41,43 A/S
10M9 c 10-chemical, uniform 1,2,4,5,17,18,35,36,40,41 A/S
10M10 c 10-chemical, uniform 4,5,12,17,18,22,23,40,41,43 A/S

Note: a: This Study; b: Peace, 1995; c: Hall, 1995.
* Refer to ID# in Table L.
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TABLE II (Contd.)
Mixture ID# Ref. Mixture type Components* Cultures
8M1 d 8-chemical, uniform 12,30,32,33,35,36,40,41 Polytox
8M2 d 8-chemical, uniform 1,2,12,18,35,36,40,41 Polytox
8M3 d 8-chemical, uniform 22,23,32,33,35,36,40,41 Polytox
gM4 d 8-chemical, uniform 4,12,17,18,32,33,34,36 Polytox
8M5 d 8-chemical, uniform 4,10,18,22,23,32,33,36 Polytoi
gM6 - d 8-chemical, uniform 2',4.,5 ,10,15,21,35,40 Polytox
10M1 d 10-chemical, uniform l,2,4,5,10,12,_18,32,33,36 Polytox
10M2 d 10-chemical, uniform 4,5,10,12,18,22,23,32,33,36  Polytox
10M3 o d 10-chemical, uniform  4,5,10,17,32,33,35,36,40,41  Polytox
10M4 d 10-chemical, uniform 2,4,5,10,32,33,35,36,40,41 Polytox
10M5 d 10-chemical, uniform 17,31,32,33,34,35,36,40,41,43 Polytox
10M6 d 10-chemical, uniform 1,2,12,18,31,35,36,40,41,43  Polytox
10M7 d 10=chernical, uniform 12,18,22,23,31,32,33,40,41,43 Polytox
~10M8 d 10-chemical, uniform 4,5,17,23,34,35,36,40,41,43  Polytox
10M9 d 10-chemical, uniform 1,2,4,5,17,18,35,36,40,41 Polytox
10M10 d 10-chemical, uniform  4,5,12,17,18,22,23,40,41,43  Polytox
B1 e Binary, non-uniform 5,34 Polytox
B2 e Binary, non-uniform 34,37 Polytox
B3 e Binary, non-uniform 10,34 Polytox
B4 e Binary, non-uniform 16,34 Poiytox
BS e  Binary, non-uniform 34,44 Polytox
B6 e Binary, non-uniform 34,49 Polytox
B7 e Binary, non-uniform 20,34 Polytox
B8 e Binary, non-uniform 24,34 Polytox
B9 e Binary, non-uniform 34,43 Polytox

Note: d: Mohsin, 1993; e: Prakash, 1994
* Refer to ID# in Table 1.
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5.2.2 Prediction of joint effects |
Based on the above findings, concentrations of components in mixtures that would jointly cause

50% inhibition were estimated using the appropriate QSAR models with Eq. 11 for uniform
mixtures and with Eq. 12 for non-uniform mixtures. These QSAR-calculated concentrations were
compared against the experimental values by utilizing all the toxicity data from binary and multi-
component, uniform and non-uniform mixtures on the two cultures (refer to Table I and II). The
predictions correlated well with the measured data, with 12 = 0.80 for a total of 610 data points.
The overall relationship between QSAR and experimental concentrations (mg/L) of the components

for all the mixtures was given by:

log C; gsar = -0-159 + 1.042 log C; gyp, - 23)
n=610; 2 =0.80; SE =0.272; p = 0.0001

The quality of fit between the predicted and experimental concentrations for the different types of
mixtures is summarized in Table IV. It can be noted that prediction for the mixtures containing
chemicals not used in the derivation of the QSAR models (e.g. two types of non-uniform mixtures
tested in this study totalling to 200 data points) yielded results of similar quality (Table IV). Fig. 1
illustrates this agreement between the QSAR-predictions and the measured data over nearly three
orders of magnitude. The data points for each type of mixture are uniformly and randomly
distributed in Fig. 1. The deviations of the points from the line of perfect prediction are due to the
minor inadequacies of QSAR models, slight deviation from simple addition, as well as
experimental errors. Nevertheless, this degree of prediction can be considered adequate for

microbial toxicity work.

100000 3 ”
3 6M-Polytox (a) e
8M-Polytox (a) R
6M-A/S (a) .
8M-A/S (a) JRe
8M-Polytox (b)
8M-A/S (c)
10M-A/S (c)
8M-Polytox (d)
10M-Polytox (d)
BM-Polytox (e) )

10000 3

+XbEOOOCH X

1000 3

100 E

QSAR-Predicted Ci, [mg/L]

10 7
] o Line of best fit for all data points

_~Z- Line of perfect prediction

1 T T YT

1 10 100 1000 10000 100000
Measured Ci, [mg/L]

Figure 1. QSAR-Predicted vs. Measured Concentrations
Data source: (a) This study; (b) Peace, 1995; (c) Hall, 1995; (d) Mohsin, 1993; (e) Prakash, 1994
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Factor of error, FE, was used to evaluate the quality of this prediction. Here, FE is defined as the
ratio of the predicted concentration to the measured concentration; if the ratio is less than one, then
its inverse is used. The individual FE values ranged from 1.00 to 4.79 for the 610 data points,
with 68% less than 2.0. The average factor of error for each type of mixtures varied from 1.34 to
2.16, and the overall average factor of error of the prediction was 1.82. Considering the similarity
- of the quality of fit of Eq 23 with that of the single chemical QSAR models, Eq 13-22, it can be
inferred that the predictive ability of the proposed approach is comparable to that of the QSAR
models. This further supports the premise that the chemicals assayed here do act by simple

addition.

5.3 Comparison of Toxicity Prediction Models Reported in the Literature

Two Structure Activity Relationship (SAR) and two Property Activity Relationship (PAR) models
for predicting toxicity of synthetic organic chemicals (SOCs) to activated sludge microorganisms
are summarized and compared. The SAR models were developed using solvatochromic parameters
and molecular connectivity indices; the PAR models, using octanol-water partition coefficient and
aqueous solubility. Experimental data on sixteen chemicals determined in this research and not
utilized in developing the above models are used to compare and evaluate the predictive ability of

t}lese SAR/PAR models.

5.3.1 SAR/PAR Models For Microbial Toxicity:

The basic requirement for developing SAR or PAR models is a consistent and robust training data
set (Cronin and Dearden, 1995). Based on the number of chemicals tested, the test procedures
used, and the stated research objectives, the studies reported by Blum and Speece (1990), Tang et
al., (1992) and those developed in this project can be considered internally consistent and well
~ designed microbial toxicity data bases. They have been utilized by their respective authors to derive
SAR and PAR models using solvatochromic parameters, octanol-water partition coefficient, and
aqueous solubility. These are briefly described below:

5.3.1.1 Solvatochromic parameters, V}, T*, o, and [,

The use of solvatochromic parameters in structure activity studies was pioneered by Kamlet and
coworkers. Their SAR models were based on Linear Solvation Energy Relationships (LSER)
where four solvatochromic parameters are used in tandem: intrinsic molar volume, Vi,

polarity/polarizability, m*, and hydrogen bond donor acidity, o, and basicity, B,. The first
parameter, V could be calculated from the molecular structures; the other three parameters have to

be determined experimentally or estimated using ground rules and from related chemicals.
Solvatochromic values for about 300 chemicals could be found tabulated in several of the works of
Kamlet and coworkers (e.g. Kamlet et al., 1983). Hickey and Passino-Reader (1991) have
recently presented a compilation of ground rules for the estimation of these parameters.

Blum and Speece (1990) have reported toxicity data and SAR models for activated sludge (as well




21

as methanogens, nitrifiers, and Microtox, a commercial microbial test culture). The following
LSER-based SAR model for activated sludge was reported in that study (where the IC50 values
were in LM/L; these have been converted to mM/L in this study):

log IC50 [mM/L] = 2.24 - 4.15 V/100 + 3.710m - 0.41 Om (24)
n=>52;r2=092

The training data set used by Blum and Speece (1990) included eight of the 16 testing set of
chemicals assayed in this study. Therefore, those eight chemicals were deleted from their data set
to derive an LSER-based model in this study using the remaining 44 chemicals as the training set.
The resulting model is similar in form and quality to their original one:

log IC50 [mM/L] = 1.99 - 3.74 V¥/100 + 3.65 B - 0.30 Ctm 25)
n=44;12=0.88 "

5.3.1.2 Octanol water partition coefficient, P

The use of octanol-water partition coefficient as log P'in structure activity studies was pioneered by
Hansch and coworkers, and has been the parameter of choice in numerous PAR studies. Listings
of log P values can be found in the numerous papers published in this area. It can also be estimated
using a group contribution method starting from a parent molecule; or by a fragment contribution
method starting from molecular fragments (Leo et al., 1975). However, in some cases, these
estimation methods may yield different results for the same chemical, depending on the starting
point of the estimations. In addition, for sparingly soluble chemicals the calculated log P values
may deviate significantly from the experimentally measured values. '

Blum and Speece (1990) have evaluated octanol-water partition coefficient as a PAR parameter to
model toxicity to activated sludge (as well as methanogens, nitrifiers, and Microtox, a tommercial
microbial test culture). The following log P-based PAR model for activated sludge was selected for
comparison from their results (where the IC50 values were in UM/L; these have been converted to
mM/L in this study:
log IC50 [mM/L] =2.12-0.76 log P (26)
n=53;r2=0.82

The training set of the above model contained five of the chemicals assayed in this study; therefore,
their model was redeveloped excluding the five chemicals, to yield a very similar model :

log IC50 [mM/L] = 2.11 - 0.74 log P @27
n=48; 12 = 0.87
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5.3.1.3 Aqueous solubility, S

The use of aqueous solubility in PAR applications is relatively uncommon. Since log S has been
correlated with the solvatochromic parameters (e.g. Kamlet et al., 1987), with MClIs (e.g.
Nirmalakhandan and Speece, 1988, 1989), and with P (e.g. Hansch et al 1968), it has been
hypothesized that toxicity could be directly correlated with S (Trevizo and Nirmalakhandan, 1997).
Experimentally measured S data for a large number of chemicals have been tabulated in the
literature; alternatively they can be estimated for a wide range of chemicals with high degree of
reliability (Kamlet et al., 1987; Nirmalakhandan and Speece, 1988, 1989).

Most of the SAR/PAR models reported in the literature, including those for toxicity, have been of a
data fitting nature. End users of SAR/PAR models would be reluctant to adapt results of such
* studies unless the predictive ability of the models are demonstrated on external testing data sets.
The primary objective of this study is to evaluate the predictive ability of the two SAR and two
PAR models reported in the literature for microbial toxicity. A brief description of each of the
SAR/PAR models compiled from the literature is presented below.

Trevizo and Nirmalakhandan (1997) have evaluated aqueous solubility to derive a PAR model for
toxicity to activated sludge (as well as methanogens, nitrifiers, nitrobacter, Polytox, and
Microtox). The following solubility-based PAR model for activated sludge was selected from their
study for comparison: '

log IC50 [mM/L] = -0.10 + 0.61 log S [mM/L] . (28)
n=33;12=0.76

5.3.2 Summary of Models

The database consisting of the testing set of 16 chemicals and the corresponding SAR/PAR model
parameters for the four models selected for comparison are tabulated in Table V. The IC50 values
measured in this study, the IC50 values predicted by the respective models, and the corresponding
factors of errors are presented in Table VI for the testing set of 16 chemicals. The factor of erroris
calculated as the ratio of the predictive IC50 value to the measured value; if the ratio is less than 1,
then its inverse is used. The salient features of the four models and the quality of their predictions
are summarized in Table VII. The models are compared on the basis of statistical validity,
applicability and ease of use, and predictive ability.




TABLE V. SAR/PAR Parameters for Testing Set of Chemicals
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SAR/PAR Parameters’

D Chemical Code®
# Solvatochromic Connectivity logP log$S
V/100 B o b A A

1 2,2,2-Trichloroethanol Alc  0.51 092 0.51 5.05 237 1.54 na
2 2,2-Dichloroethanol Alc 042 077 045 399 203 049 na
3 1,2-Dichloro 2-methyl propane Hal 0.64 0.10 0.00 5.47 2.72 3.03 na
4 1,2,3-Trichloropropane Hal 0.63 0.10 0.00 539 3.07 198 1.11
5 Cyclopentane Ak 050 0.00 0.00 3.54 250 2.05 0.34
6 1,1,2-Trichloroethane Hal 0.52 0.10 0.00 4.68 2.51 2.05 1.52
7 1,3-Dichloropropene Hal 0.54 0.05 0.00 4.12 2.19 1.60 na
8 m-Cresol Aro 0.63 0.34 058 475 254 197 2.34
9 p-Cresol Aro 0.63 034 0.58 475 254 197 235
10 2-Nitrophenol Ao 0.68 057 0.76 4.09 2.17 1.85 1.29
11 4-Nitrophenol Aro 0.68 032 093 4.09 225 1.85 2.17
12 2,4-Dinitrophenol Aro 0.82 0.77 092 450 237 191 1.65
13 2,4-Dichlorophenol Aro 0.72 0.18 0.78 594 3.09 3.07 1.44
14 2,3,4-Trichlorophenol Aro 0.81 0.08 0.87 7.00 3.58 3.85 na
15 2,3,5—Trichlorophendl Aro 0.81 0.08 087 7.00 3.57 3.85 na
16 2,4-Dinitrotoluene Aro 0.87 054 032 505 265 215 na

e  Alc- alcohols; Hal- halogenated aliphatics; Alk- alkanes; Aro- aromatics

*  P- octanol-water partition coefficient [-]; S - aqueous solubility [moles/L]
na Data not available
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TABLE VII. Summary of Comparisons Between SAR/PAR Models

LSER MCI logP | logS

Eq(2) | Eq(3) Eq@) Eq(5) Eq(6)|Eq(®) | Eq(®)
Comparison of model features:
Chemicals covered* Mixed| Alc. Aro. Hal. Alk.| Mixed| Mixed
N° of variables, v 3 1 1 1 1 1 1
N° of cases, n 44 14 12 14 11 48 33
N° of cases per variable, j 15 14 12 14 11 48 33
Correlation coefficient, r* 0.88 0.83 0.66 079 0.75 0.75 0.76
Adjusted r? 0.88] 0.82 0.63 077 0.72} 0.75( 0.75
RMS residual 0.36] 030 039 022 0.23] 048] 0.41
Probability, p 0.0001|<0.0001 0.0013 <0.0001 0.0006{ 0.0001} 0.0001
Comparison of model predictions:
N° of cases tested 16| overall for MCI models = 16 16 9
1* for predicted vs. measured |  0.44| overall for MCI models = 0.90 0.95 ns
Probability of correlation, p | 0.0053| overall for MCI models = 0.0001 | 0.0001 ns
Average factor of error, AFE 12| overall for MCI models = 2.2 2.5 6.1
Cases with AFE < 2.5 50%]| overall for MCI models = 81% 69%| 44%

# Alc.-alcohols; Aro.- aromatics; Hal.- halogenated aliphatics; Alk.- alkanes

ns- statistically not significant
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5.3.3 Statistical validity of the Models

In addition to the basic statistics reported for each model under the Methods and Materials Section,
a key factor to be considered is the number of cases per independent variable. In linear regression
analysis, the number of cases per independent variable, j, should be high enough to avoid chance
correlations (Topliss and Costello, 1972). It is generally accepted that j should be at least 10, and
preferably greater than 20. The two PAR models satisfy this criterion more than adequately. Of the
two SAR models, the molecular connectivity-based model suffers most from this criterion because
different congeneric groups of chemicals require different models to explain the variance among the
cases. Due to the small number of chemicals covered by each of the equations, their j values range
from 11 to 14 (Table VII). Even though the validity of these models has been documented and
justified using a variety of statistical tests (Hall et al. 1996), end users may be reluctant to apply
such models unless their predictive ability on a wider range of chemicals is well demonstrated.
Although the LSER model given by Eq 25 covers 44 cases, it needs three independent variables to
explain 88% of the variance among the cases and is thus only slightly better than the MCI models

with j = 15.

The balance between number of cases covered, n, and the number of independent variables, v,
required to explain a reasonable percentage of the variance among the cases is often a subject of
. debate. ‘Because of the limitations of the resources available for toxicity testing on one hand and the
information content of the molecular descriptors on the other, a compromise has to be made. The
adjusted 12 is a statistical measure that can compare different models with v and n combinations.
Based on the adjusted r2 values calculated in this study for the different models, all of them except
the MCI model for aromatic compounds can be seen to be acceptable (Table VII)

Another consideration in regression analysis is that intercorrelation between the independent
variables should be minimal when the model requires multiple variables. For the LSER model
presented here with three independent variables, intercorrelation between them was found to be
negligible, with a maximum r2 of -0.29 between Vi/100 and -Bm for the chémicals used in
developing the model.

As a third consideration, linear regression models have to be statistically significant to ensure that
the model is not due to chance correlations. A criterion that is often used to test for significance is
the p value. It is generally accepted that p < 0.05 implies borderline significance; p < 0.01 implies
significance; and p < 0.005, high significance. All the models evaluated in this study were found to
be statistically highly significant as indicated by their respective p values (Table VII). In other
words, these models encode a systematic variation of toxicity with the respective structural features
or properties, and the relationship is not due to pure chance alone.

5.3.4 Applicability and Ease of use of the Models
From the end users’ perspective, the mode] parameters should be readily available for a wide range
of chemicals, error-free, and reliable; and the models themselves should be applicable to wide
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range of chemicals. Based on the availability of model parameters, the molecular connectivity-
based approach proved to be the most convenient because, a standard algorithm was available to
calculate all the parameters starting from the molecular structures. While a computer program was
used in this study to determine the MClIS, the calculations can be manually performed with ease.

Solvatochromic parameters for only 11 of the chemicals could be found from literature; values for
the remaining five chemicals (ID # 1, 2, 10, 12, and 16 in Table V) had to be estimated using the
rules reported in the literature (Hickey and Passino-Reader, 1991). The estimated solvatochromic
values could not be verified independently. The rules for estimating the solvatochromic parameters
are far from rigid and consistent; their application to “new” chemicals requires considerable
chemical insight, intuition, and judgment; and several optional corrections, modifications, and
adjustments have to be made as deemed necessary by the user (Hickey and Passino-Reader, 1991).

The log P values used in this PAR work are calculated rather than experimental. Due to the high
uncertainties in the measured log P values and the availability of a simple algorithm for their
calculation, the calculated values are recommended to assure consistent and reproducible results.
However, for some chemicals, the calculated values may not yield unique values.

The S values used here are all experimental values found from the literature. Values for S were not
readily available for seven of the chemicals assayed. Even for the common chemicals for which
experimentally measured data exist, significant discrepancies can be noted; and the experimental
errors may be large, particularly for the sparingly soluble ones which are environmentally relevant.
However, since toxicity is a solubility related phenomenon, correlations with aqueous solubility
may be of significance in further studies in mechanistic understanding of microbial toxicity.

In terms of applicability, the LSER model has to be rated below the MCI model. For instance, even
though the training set for the LSER model had eight chlorinated phenols, its predictions for the
three chlorophenols (ID # 13, 14, 15 in Table V) in the training set of this study are not better than
those for the MCI model, whose training set did not include any phenols at all. For the two
halogenated aliphatics tested (ID # 3, 4 in Table V), the quality of the predictions by the LSER
model is inferior to that of the MCI model in spite of the fact both models were trained on several
such chemicals. It is interesting to note that the MCI model predicted remarkably well for the two
chlorinated alcohols (ID # 1, 2 in Table V) even though its training set did not contain any. From
these results it is deduced that the MCI approach can perform well even for molecules with multiple
atomic constituents as long as those constituents are adequately represented individually in the
training set. Similar results were found in other MCl-based QSAR studies on aqueous solubility,
Henrys Constant etc Nirmalakhandan (1988).

5.3.5 Predictive ability
The predictive ability is compared on the basis of two factors: first, the degree of agreement
between the predicted and measured IC50 values; and second, the factor of error in the predictions.
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Considering the reproducibility of IC50 values measured by the respirometric method for microbial
cultures; the ease of use of SAR/PAR models; and the quality of fit of the state-of-the-art
SAR/PAR models, it is proposed that an average factor of error, AFE, of 2.5 be considered an

acceptable criterion.

The overall quality of the predictions by the four models is illustrated in Fig 2. Based on the
statistically significant (p = 0.0001) correlation between the measured and the predicted IC50
values, the log P method ranks best (12 = 0.95) followed closely by the MCI model (r2 = 0.90).
The LSER model was not satisfactory (r2 = 0.44) with a marginally significant (p = 0.0053)
correlation, although it covered only nine chemicals. No statistically significant correlation was
found between the measured ICS0 values and those predicted by the log S model. The breakdown
of the latter two models may be due to the inadequacies of the models themselves or/and to the fact
that the model parameters (i.e. the solvatochromic parameters and S) themselves may be
erroneous. At this point it is not possible to distinguish between the two.

10000

LSER Model; 12 = 0.44
MCI Model; r2 = 0.90
Log P Model; 12 = 0.95

Log S Model; ns
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IC50 [mM/L] Predicted by SAR/PAR Models
=

IC50 [mM/L] Measured Experimentally

Figure 2. Comparison Between Experimental and Predicted IC50 Values
Note: 12 for log S model was not significant.
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Based on the overall AFE, the MCI models and the log P model can be considered to be good
predictors of microbial toxicity; their predictions for 75% of the test chemicals are within a factor of
error of 2.5. The predictions of the LSER and log S models for 50% of the test chemicals are
above the acceptable factor of error (Table VII). All four models identified the nitro-aromatic
chemicals, (ID # 10, 11, 12, and 16 in Table V) to be more toxic than the predictions; this is in
agreement with the other researchers in that these chemicals are known to act reactively. All four
models predict poorly for 2,4-dinitrophenol with AFE > 2.5, again confirming its highly reactive
toxic mechanism (Fig 3).

4— Acceptable FE of 2.5.
2,4-Dinitrotoluene | & D A A  LSER Model
2,3,5-Trichlorophenol O &> ¢ MCI Model
2,3,4-Trichlorophenol @ /O O LogP Model
2,4-Dichlorophenol |£O O O Log S Model
2,4-Dinitrophenol &0 0O A
4-Nitrophenol H PO O
2-Nitrophenol B A
p-Cresol ¢ O
m-Cresol O |
1,3-Dichloropropene o
1,1,2-Trichloroethane 3 ¢ O (A
Cyclopentane |O @M
1,2,3-Trichloropropane [0 < A
1,2-Dichloro 2-methyl propane < A O
2,2-Dichloroethanol KO A
2,2,2-Trichloroethanol o< A
1 lo 10 1000

Factor of Error
Figure 3. Comparison Between Predictive Factor of Error by Four SAR/PAR Models
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The overall quality of the LSER method is particularly impaired by 2,2,2-trichloroethanol and 2,2-
dichloroethanol. Since its predictions for the remaining chemicals are acceptable and comparable to
the predictions made by the other models, the estimated solvatochromic values for these two

chemicals are suspicious. The B values of 0.92 and 0.77, in particular, “appear” to be too high.

These values were estimated (by Hickey, 1997) using the ground rules (Hickey and Passino-
Reader, 1991), by adding contributions for two aliphatic carbons, an aliphatic hydroxyl group and
3 or 2 aliphatic chlorines. These values may have to be corrected by allowing for diminishing
contributions by the successive additions of chlorines or by using a leveling factor of 0.8 to 0.9.
Even with such adjustments, the predictions for these two chemicals are not acceptable. Anomalies
such as this and similar difficulties in establishing the solvatochromic parameters have greatly
discouraged the application of the LSER approach by a wider range of researchers.

6.0 CONCLUSIONS

Joint effects of binary and multi-component, uniform and non-uniform mixtures assayed in our
microbial toxicity studies were found to be simply additive, or essentially simply additive. These
results are in agreement with the conclusions reported in the literature on fish toxicity studies.
Using QSAR models to predict single chemical toxicity and assuming perfect simple additivity,
concentrations of the components in mixtures that would cause 50% inhibition were predicted.
These predicted concentrations agreed well with the measured values over nearly three orders of
magnitude with 12 = 0.80 at p = 0.0001 for 610 sets of data points from 40 different mixtures on
two different microorganisms. The overall average factor of error of these predictions was 1.82.
The results of this study provide an impetus to utilize the large number of single chemical QSAR
models reported in the literature by other researchers in predicting joint effects in the aquatic
toxicology and ecotoxicological fields. :
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